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SUMMARY

A local grid refinement method is presented and applied to a three-dimensional turbulent recirculating
flow. It is based on the staggered grid arrangement. The computational domain is covered by
block-structured subgrids of different refinement levels. The exchange of information between the
subgrids is fully conservative and all grids are treated implicitly. This allows for a simultaneous solution
of one variable in all grids. All variables are stored in one-dimensional arrays. The solver selected for the
solution of the discretised finite difference equations is the preconditioned bi-conjugate gradient (Bi-CG)
method. For the case examined (turbulent flow around a surface-mounted cube), it was found that the
latter method converges faster than the line solver. The locally refined mesh improved the accuracy of the
pressure distribution on cube faces compared with a coarse mesh and yielded the same results as a fine
single mesh, with a 62% gain in computer time. Copyright © 1999 John Wiley & Sons, Ltd.
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ing flows

1. INTRODUCTION

In the local grid refinement method, the computational domain is first covered by a relatively
coarse numerical mesh. In the most critical regions of the domain, the grid is locally refined,
i.e. the cells are subdivided in one or more directions, so as to capture important flow
characteristics without the necessity of extending the grid lines away from that region. The
clustering of grid lines away from the critical regions results in cells with high aspect ratios,
which affects numerical stability. The selection of these regions is made a priori and not during
the solution process as in adaptive grids. It is possible to perform successive refinements in an
already refined region; in this way different refinement levels are formed.

Coelho et al. [1] presented a local refinement method which they applied in two-dimensional
laminar flow cases. They used the collocated grid arrangement. The embedded cells are
generated by halving the mesh spacing on a cell-by-cell basis in both the x- and y-directions.
Each flow variable is solved simultaneously for the whole solution domain, thus providing a
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strong coupling between grids of different refinement level. The method was applied to the
solution of two scalar transport equations, to cavity flows driven by body and shear forces and
to sudden plane contraction flow. Good agreement was found between the predictions and the
analytical solutions or the experimental measurements. The results show that neither the
convergence rate nor the stability of the method is affected by the embedded grids.

Lockwood et al. [2] proposed a local refinement method using a refinement ratio of 1:3.
Again, the discretised equations were solved simultaneously for the whole solution domain
inclusive of the regions where local refinement is applied. The method was applied to
three-dimensional isothermal turbulent flows, where indeed it captured flow characteristics
that single grids failed to do. Details about the savings in computer time and memory were not
given.

Schneider et al. [3] applied a grid refinement method where subgrids were overlapped with
one grid line. Contrary to the two previous works, the grids were considered independent of
each other and in the boundaries Dirichlet conditions were applied. Thus, at each iteration,
data were transferred from the coarse grid to the refined grid and 6ice 6ersa and were used as
boundary conditions until convergence. The method was applied in isothermal and reacting
flow cases inside a coal fired boiler. The results showed that the stability of the code was
hardly affected by the local refinement method. The savings in computer time per iteration
between the coherent fine mesh and the multidomain version (where the near burner region
was discretised with a separate grid using the same grid spacing as the fine grid) was 25.8%.

Smith and Gosman [4] combined the local grid refinement method with the multigrid
technique. The use of a collocated variable arrangement together with a common cell face
between the coarse and fine grid structure allowed the simple implementation of flux
conservation and led to a particularly simple prolongation operator. The solution procedure
was assessed through application to a plane laminar jet at 45° to the grid and to the
well-known driven cavity at Reynolds numbers of 100 and 1000. It was demonstrated that the
local refinement can, very nearly, reproduce the accuracy of full fine grid solutions and, in
accordance with the multigrid theory, solution times varying linearly with the grid size were
achieved in most cases. Recently, Emvin and Davidson [5] implemented the local refinement
strategy in a multigrid environment and applied it successfully in two test cases (backward-
facing step and a three-dimensional ventilated enclosure).

The above-mentioned works have emphasised the advantages of local refinement using an
arbitrary number of structured blocks: complex geometries with a large variation in length
scale can be handled easily, parallelisation is straightforward while the simple local indexing
system eases vectorisation. On the other hand, adaptation is difficult, while the generation of
structured grids may not be easy for very complex geometries.

Fully unstructured meshes can cope with very complex geometries, the aspect ratio is easily
controlled while the grid may be easily locally refined. These advantages are, however, offset
by the irregularity of the data structure, the higher memory requirements (since neighbouring
connections need to be specified explicitly), the matrix of the algebraic equation system no
longer has a regular diagonal structure, while the bandwidth needs to be reduced by reordering
of the points (see Ferziger and Peric [6]). Demirdzic and Muzaferija [7] consider the local
refinement as a special case of unstructured mesh with cells of arbitrary topology. In their
methodology, the control volume can be of an arbitrary polyhedral shape, i.e. it can have an
arbitrary number of cell faces. Their method shares all the advantages and disadvantages of
unstructured meshes. The present method is simpler as it is based on the block-structured
approach, albeit less general.
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Ferziger and Peric [6] and Peric [8] discuss methods that are more close to the one presented
in this paper, i.e. block-structured. These authors stress that conjugate gradient-type solvers
are a good choice since they are capable of handling the irregular matrix structure that the
local refinement incurs. In the present work such a solver is used, while its effect on the
improvement of the convergence behaviour (as compared with a line solver) is quantified.

In conclusion, both block-structured meshes and unstructured meshes have their strengths
and weaknesses. In view of ease of programming and code transparency, it was decided to
further pursue the block-structured local refinement methodology.

In this paper, a local refinement method is presented for staggered grids. The characteristics
of the method that will be analysed in the following sections are

(a) The computational domain in covered with structured subgrids. The subgrids are in
contact in a common interface and do not overlap. The transfer of information is fully
conservative, i.e. account is taken to ensure reciprocity of the fluxes on either side of an
interface. In this way, conservativeness is easily checked and applied.

(b) A flow variable is solved in all grids simultaneously and not in each grid separately using
Dirichlet boundary conditions. For the solution of the finite difference algebraic system,
the preconditioned bi-conjugate gradient (Bi-CG) method is used.

(c) The method can be applied with any refinement ratio. In the next sections the method is
described for ratio of 1:2 in all directions.

(d) All variables are stored in one-dimensional arrays. The subgrids are stored consecutively,
i.e. one after the other. This method of storage is preferred to the alternative way of
storing the elements in a four-dimensional array, i.e. F(NI, NJ, NK, ngrids). Since each
subgrid is structured, there is no need to use unidimensional arrays for the storage of the
neighbours of each grid node. Only the neighbours of nodes that are adjacent to grid
interfaces need to be stored.

In what follows, the transfer of information across the subgrid interfaces will be examined
in detail. The method is then applied for the calculation of the turbulent flow around a cube
mounted on the surface of a wind tunnel. The conjugate gradient (CG) method and the
line-by-line solver are compared and the effect of the local refinement on the accuracy of the
results and the execution times is discussed.

2. METHOD FORMULATION

2.1. Transfer of information from the coarse to the fine grid

Figures 1(b)–4(b) show the nodes of the coarse grid that are involved in the transfer of
information from the west side to node P of the fine grid for the scalar variables U, V and W
velocity respectively. Due to halving the distance in all directions, there are nodes of the finer
grid close to the interface that do not have actual upstream nodes on the coarser grid. Thus,
it is necessary to introduce fictitious nodes; their location is denoted by × in Figures
1(b)–4(b). The discretised transport equation of the general variable F is

APFP= %
i=E,N,S,D,U

AiFi+AWFW+SF,

where the node W is fictitious. The value of each variable stored in the fictitious node is
calculated from the linear interpolation between the neighbouring nodes

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1157–1172 (1999)
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Figure 1. (a) East neighbours of scalar FP of the coarse grid, (b) west neighbour of scalar FP of the fine grid. Full
circles indicate interacting nodes.

FW= %
4

i=1

wfiFWi
,

where wfi are the weighting factors for the linear interpolation and Wi are existing nodes of the
coarse mesh; these are shown in Figures 1(b)–4(b) for all variables. Thus, the discretised
equation becomes

APFP= %
i=E,N,S,D,U

AiFi+AW %
4

i=1

wfiFWi
+SF.

Thus, the treatment of the common interface is reduced to the treatment of the second term
of the right-hand-side of the above equation. The incorporation of this term with the source
term will significantly reduce the coupling between the grids (explicit coupling). In this case, a
reduction of the convergence rate is expected. Thus, the values FWi

are not incorporated into
the source term and are considered instead as unknown in every iteration. In this way, the fully
implicit treatment between grids of different refinement levels is retained. The interfaces that
are located on any other side of node P are treated in a similar manner.

Figure 2. (a) East neighbours of velocity UP of the coarse grid, (b) west neighbour of velocity UP of the fine grid.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1157–1172 (1999)
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Figure 3. (a) East neighbours of velocity VP of the coarse grid, (b) west neighbour of velocity VP of the fine grid.

2.2. Transfer of information from the fine to the coarse grid

The integrated transport equation is written as

Je−Jw+Jn−Js+Jd−Ju=SF,

where, for example,

Je=
�

ruF−GF
(F
(x
n

e

Ae,

where Ae is the east area of the control volume.
The variable Ji (i=e, w, n, s, d, u) is the flux of F with convection and diffusion through the

interface i. For the case when the i face of a control volume contacts more than one face of
adjacent volumes, the total flux is calculated from the sum of the individual fluxes. Figures
1(a)–4(a) show the east neighbours (denoted as Ei) for node P of the coarse mesh for the
scalar variables and the velocities. The number of neighbours is either nine (for scalars and
velocity U) or six (for velocities V and W). For the hybrid differencing scheme used here, the

Figure 4. (a) East neighbours of velocity WP of coarse grid, (b) west neighbour of velocity WP of the fine grid.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1157–1172 (1999)
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total flux from the east side of the control volume around node P is calculated as (see Patankar
[9] for the case when there is only one neighbour)

Je= %
9

i=1

[AEi
(FPi

−FEi
)+Cei

FPi
].

In the above relation, Cei
is the contribution of the node Ei (i=1, 9 or 6) to the convective flux

through the east face, i.e. Cei
= [ruA ]wi

, where Awi
is the area of the volume surrounding Ei that

is in contact with the east face of the volume surrounding P. The nodes Pi are also shown in
Figures 1(a)–4(a) and are indeed the fictitious nodes discussed earlier. Relations that involve
only one neighbour can be written for the fluxes through the other faces. Substituting all the
relations into the integrated transport equation and rearranging the terms we get

APFP= %
i=W,N,S,U,D

AiFi− %
9

i=1

[AEi
(FPi

−FEi
)+Cei

(FPi
−FP)]+SF,

where

AP= %
i=W,N,S,U,D

Ai,

and the east nodes have been excluded from the summation.
This equation governs the transfer of information from the fine mesh to the coarse mesh.

Again, the values FEj
are treated implicitly, while FPi

are calculated through linear interpola-
tions from surrounding nodes.

The pressure correction equation is handled in exactly the same way.

3. SOLUTION OF THE LINEAR SYSTEM

Since many terms are not incorporated in the source term, the linear system is no longer
tridiagonal in each direction for those cells that are in contact with the interface between
subgrids of different refinement levels. Therefore, the well-known TDMA method is replaced
by the preconditioned Bi-CG. This method is very flexible and capable of handling matrices
with arbitrary sparsity patterns. In order to accelerate the convergence rate, the incomplete
lower/upper (ILU) decomposition with no fill-in was used for preconditioning. This solver is
used for all variables, including the pressure correction equation. In the latter case, the fact
that the matrix is symmetric is taken into account and thus the number of operations is
significantly reduced (compared with unsymmetric matrices). Details for the use of the method
are given in the next section.

4. APPLICATION OF THE METHOD. RESULTS AND DISCUSSION

The method was applied for the flow around a cube of 200 mm height mounted on the surface
of a wind tunnel. Experimental measurements for velocities and pressure distribution on the
cube faces were made by Castro and Robins [10]. The velocity of the incoming flow has a
boundary layer type profile. The infinite velocity is 0.5 m s−1 and the Reynolds number (based
on the infinite velocity and the cube height) is 4000. The boundary layer height is 10 cube
heights.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1157–1172 (1999)
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Table I. Comparison of the Bi-CG and the line solver

Grid 29×25×20 39×35×28

Iterations CPU time (s) Iterations CPU time (s)

686 5278 1145Line solver 25 535
CG 106 1933 231 12 911

−84.5 −63.3 −79.8Change (%) −49.4

The local refinement method was applied in three successive steps: in the first step, a coarse
mesh 29×25×20 was constructed. The second step involved the local refinement of this mesh
in a region close to the cube. The two meshes were the 29×25×20 (coarse mesh) and
23×23×19 (local refinement). The third step involved the construction of a single fine mesh,
which offers the same grid line distribution close to the cube as the locally refined mesh. This
mesh is constructed by extending the grid lines of the local refinement (i.e. grid 23×23×19)
until they meet the boundaries of the computational domain. The resulting grid is 39×35×
28. These meshes in the x–z-plane are shown in Figure 5.

In order to demonstrate the superiority of the method, it must be proved that the locally
refined mesh is capable of providing more accurate results than the coarse mesh in less
computer time than the time needed for the single fine mesh. Also, the results of the locally
refined mesh and the single fine mesh should be identical (or at least very close to each other).

4.1. Comparison of the CG method with the line-by-line sol6er

In this section, the selection of the CG method as a system solver will be examined in the
single meshes (29×25×20 and 39×35×28). A comparison will be made with the line-by-line
solver (tridiagonal matrix algorithm).

The inner iterations of the latter solver is five for the pressure correction equation and three
for the rest of the variables. For the transport equations, the convergence of the CG method
for each outer iteration is monotonic and very fast: typically two or three iterations are needed
in order to reduce the residual by three orders of magnitude. However, many more iterations
are needed for the pressure correction equation; typically 20–70 inner iterations are needed in
order to reduce the residual by one order of magnitude. The reason for this dramatic increase
has to do with the type of the equation: this is a diffusion-type equation, which implies that
all six (or more in case of local refinement) neighbours affect the value of the each node. On
the other hand, for the transport equations, due to upwind differencing, only upwind nodes
affect its value.

Table I shows the results of the computer time and the number of iterations for convergence
for both solvers for both grids. The solution is assumed fully converged when all normalised
residuals are below 10−4. All runs were made in a HP 710 Apollo computer with full
optimisation during the code compilation. The underrelaxation factor for all variables was 0.5.
No attempt was made to optimise these factors. The reduction in computer time using the CG
method is obvious (1.9 and 2.7 times). Even more dramatic is the decrease in the number of
iterations (5 and 6.4 times). On the other hand, an increase in computer time per iteration is
observed (2.3 and 2.5 times). These values justify the use of the CG method not only for the
single meshes but for the locally refined meshes as well, with the additional advantage of
allowing fully coupled treatment between the subgrids. It is important to note that the figures
quoted above are case-dependent and cannot be considered as general.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1157–1172 (1999)
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Figure 5. Grid lines in the x–z-plane (a) grid 29×25×20, (b) grids 29×25×20 and 23×23×19, (c) grid
39×35×28. Dashed line shows the interface between grids of different refinement level.
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Figure 6. Convergence history for the single fine mesh: (a) with the CG method, (b) with the line-by-line solver.

Figure 6 shows the convergence history using the two solvers for the fine single mesh
(39×35×28). The CG method leads to monotone convergence while the line solver to
oscillatory behaviour. This is the reason for the dramatic decrease in the number of iterations
and the total execution time.

Table II. Number of iterations and execution times for the three cases (Bi-CG solver)

Iterations CPU time (s)

106Grid 29×25×20 1933
Grids 29×25×20 and 23×23×19 149 4864
Grid 39×35×28 12 911231

−35Savings between local refinement and single fine mesh (%) −62

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1157–1172 (1999)
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Figure 7. Velocity vectors in the x–z-plane in the cube symmetry plane (detail); (a) grid 29×25×20, (b) grids
29×25×20 and 23×23×19, (c) grid 39×35×28.
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Figure 8. Cp distribution on the cube surface along the line ABC (x–z-plane of symmetry).

4.2. Execution time required by the locally refined meshes

Table II shows the number of iterations and the total execution time for the three meshes
examined (with the CG solver). Also given is the percentage gain in the case of the locally
refined mesh and the single fine mesh. It is to be noted that we have a decrease of 35% in the
number of iterations and of 62% in the total execution time. Also, the memory needed is
reduced due to the smaller number of grid points. Hence, there is a significant gain when a
locally refined mesh is used. However, it is important to prove that the results obtained have
increased accuracy compared with the coarse mesh (or have the same accuracy as the results
of the single fine mesh) in order to prove the superiority of the method.

4.3. The effect of the local refinement on the accuracy of the results

The accuracy of the locally refined grid will be assessed against the available experimental
data and the results that the single fine mesh gives. The velocity field in the middle of the
x–z-plane for the three grids is shown in Figure 7. It is obvious that with the coarse mesh it
is not possible to clearly pick up the recirculation region in front of the cube. This zone is
captured only when a locally refined mesh or a single fine mesh are used. Also in the case of
local refinement, flow enters and exits from the grid interface without any effect on the
stability of the method. Although a small recirculation region in the leading-edge of cube
appears in the experiments, it can not be captured by the present simulations. This phe-
nomenon has also been reported by other investigators and it is attributed to deficiencies of the
k–o model. The problem is traced to the calculation of the generation of the turbulent kinetic
energy and is dealt in detail by Murakami [11] and Murakami et al. [12]. The same behaviour
is also noted in the vertical leading-edges of the cube.

Figure 8 shows the distribution of surface pressure coefficient Cp in the symmetry x–z-plane
as computed with the three meshes. The calculation of Cp is based on the boundary layer
velocity on the cube height. Obviously, the accuracy is greatly enhanced in the front face of the
cube and the minimum value of Cp is correctly calculated in the leading-edge when the locally

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1157–1172 (1999)
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refined mesh is used. The same results are also computed with the single fine mesh. However,
there are two regions where differences with the experiments are observed: the first region is
in the front face close to the cube basis and the second is in the first half of the top face. The
first region is associated with the recirculation region that is created in front of the cube.
Detailed measurements of mean and root-mean-square (rms) velocities are not available in
this region so as to trace with certainty the cause of the discrepancies. However, the same
behaviour is also reported by Baetke et al. [13]. It is noted that Song and He [14] predict, with
very good accuracy, this region using a large eddy simulation (LES) method for turbulence
simulation. The discrepancy in the second region (very rapid pressure recovery immediately
after the leading-edge) is related to the inability of the k–o model to capture the small
recirculation zone in that area. Other models, like the algebraic stress model or the LES
model, are capable of capturing this region (Murakami [11]) and thus delaying the pressure
recovery. In the downstream face, the Cp distribution is well predicted.

Figure 9 shows the Cp distribution in the x–y-plane at a half cube’s height. Again the
locally refined mesh leads to increased accuracy in the front and close to the lateral faces.
Discrepancies with respect to the experimental measurements are observed close to the lateral
leading-edges for the same reasons that have already been discussed. In the upstream and
downstream faces, the Cp distribution is well predicted.

Figures 10 and 11 show the Cp distribution in the lateral faces along the vertical direction
and the top face along the transverse direction. In both cases, the Cp distributions are
satisfactorily predicted while there is slight improvement when the locally refined grid is used.

Figure 12 presents the comparison between measurements and predictions for the vertical
distribution of the main velocity in three locations (on the cube and downstream). The
non-dimensionalisation has been done with the reference velocity Ur, which is equal to the
infinite velocity (0.5 m s−1). The predictions are generally satisfactory, even inside the wake
region behind the cube. The effect of grid distribution is generally small.

Finally, Figure 13 shows transverse distributions of the main velocity in two stations
downstream the cube. There is some overestimation of the velocities (especially in the

Figure 9. Cp distribution on the cube surface along the line ABC (x–y-plane at half a cube height).
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Figure 10. Cp distribution on a lateral cube surface (along the line shown).

second profile) which should be attributed to the isotropical character of the k–o model and
its inability to predict the flow characteristics after the recirculation zones. Also, it may be
attributed to the unsteady character of the wake in this region.

Figure 11. Cp distribution on the top cube surface (along the line shown).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1157–1172 (1999)
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Figure 12. Main stream velocity distribution along the z-axis at (a) x=0H, y=0H, (b) x=1H, y=0H, (c) x=2H,
y=0H (H is cube height).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1157–1172 (1999)
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Figure 13. Main stream velocity distribution along the y-axis at (a) x=0.75H, z=0.5H, (b) x=3H, z=0.5H (H is
cube height).

5. CONCLUSIONS

It was found that for the case of the turbulent flow around a surface-mounted cube, the
preconditioned Bi-CG method leads to shorter execution times than the line-by-line solver. The
number of iterations for full convergence is significantly reduced, although the time per
iteration is increased. The predictions with the locally refined mesh and the fine single grid are
almost indistinguishable. The use of the locally refined grid in the cube vicinity leads to
increased accuracy in the Cp distribution with a 62% gain in computer time. Velocity
distributions are slightly affected.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1157–1172 (1999)
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